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Abstract-This paper investigates the heat transfer from a heated solid surface to droplets evaporating in 
the low superheat regime, where the droplets stick onto the surface without bubble nucleation. The 
model consists of a regular array of identical droplets interacting thermally through the solid. Analytical 
expressions for the Nusselt number involving a power series of K”~, where K is the fraction of the solid 
surface wetted by the droplets, are derived. It is found that droplet interactions cannot, in general, be 
ignored. Furthermore, the strength of these interactions is a function of droplet contact angle, solid 

conductivity, and droplet concentration. 

1. INTRODUCTION 

THE EVAPORATION of droplets at a heated solid surface 

can be classified into three categories, depending on 
the temperature of the solid surface in excess of the 
droplet saturation temperature. Specifically, these are 
low superheat, intermediate superheat, and high 
superheat. In the region of low superheat evaporation, 
the droplets maintain total contact with the solid sur- 
face over their entire lifetime. While the convective 
effect may be significant in some cases, many inves- 

tigators [l-5] believe that conduction is the dominant 
heat transfer mechanism inside the droplets. Fur- 
thermore, it appears that no analytical study incor- 
porating convective heat transfer exists in the litera- 
ture, although fluid motion within the droplets has 
been observed experimentally [6,7]. For sufficiently 
low surface temperatures in the intermediate super- 
heat regime, the droplets and solid surface maintain 
only partial contact due to bubble nucleations at the 

solid-liquid interface. As in the case of low superheat, 
the droplets stick onto the solid surface during their 
entire lifetime. However, over the higher temperature 
range, the droplets become unstable and split into 
main and satellite droplets, each maintaining inter- 
mittent contact with the solid surface; this tem- 

perature range is sometimes called the transition 
region. Finally, if the surface temperature is increased 
beyond a critical value (the high superheat regime), a 
vapor layer formed beneath the droplets keeps them 
from contacting the solid surface. This mode of evap- 
oration is commonly called the Leidenfrost phenom- 
enon, and has been the subject of extensive studies [8- 
111. 

In this paper, the heat transfer aspects of droplets 
evaporating in the low superheat regime will be 
studied. The analysis will cover the case of practical 
interests, in which a large number of droplets occupy 
a high fraction of the surface area. A consequence of 

high concentrations of droplets is that their thermal 
interactions may become significant, and the analyses 
based on an isolated droplet may no longer be appro- 
priate. In this study, the single-droplet model of 
Sadhal and Plesset [2] (see Fig. 1) will be extended 
to include multiple-droplet systems, in which droplet 

thermal interactions will be dealt with rigorously. The 
model employed in this study consists of identical 
droplets in the form of a spherical cap arranged in a 
periodic array, either square or hexagonal, through- 
out the entire surface of a semi-infinite solid. Ignoring 
the effects of fluid motion inside the droplets, heat 
flow in the solid and liquid phases will be governed 

by steady-state conduction since the time scale of heat 
diffusion is much shorter than that of evaporation. At 
the solid-liquid interface, perfect thermal contact is 
assumed, and the usual conditions of continuity of 
temperature and heat flux across the interface hold. 
In view of the fact that the conductivity of vapor is 

much lower than that of solid or liquid, it is resonable 
to assume that heat diffusion across the solid-vapor 
or liquid-vapor interface is negligible. Thus, the solid- 
vapor interface is assumed to be impervious to heat 
flow, and all the heat crossing the solid-liquid inter- 
face diffuses towards the liquid-vapor interface, where 
it is taken up as the latent heat of evaporation. Satu- 
ration temperature will be assumed for the liquid- 
vapor interface. Later, the validity of the above 
assumptions will be discussed in greater detail. 

1987 
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NOMENCLATURE 

a, d thickness of a liquid layer, time rate of K fraction of the solid surface wetted by 
change of a the droplets 

a,9, a, equations (77), (81)-(83) 1 liquid latent heat of evaporation 
A’o’ 

b” 
equations (30)-(33) P liquid-to-solid conductivity ratio 
distance between the reference droplet 2’ 0) , II(“) equations (22) and (23) 
and its neighbor under consideration P mass density of droplet liquid 

CP specific heat of droplet liquid CT surface tension. 
C’“’ 

g” 

equations (57) and (64), Table 2 
gravitational acceleration 

G, Table 1 
Coordinate systems 

h heat transfer coefficient 
(x, y, z) rectangular coordinates 

hi, h,,,,H, equations (61) (62), (65) and (66) 
(Q, 4, z) cylindrical coordinates with the origin 

h,, h,, h, metric coefficients of the toroidal 
at the center of the base area of any 

coordinates ([, r~, $), equation (13) 
one droplet under consideration and 4 

k thermal conductivity 
measured from the x-axis, Figs. 3 
and 4 

ti rate of evaporation 
N a positive integer 

(r, 4, z) cylindrical coordinates, origin at the 

NU Nusselt number, equation (1) 
reference droplet, Figs. 3 and 4 

434 heat flux, average heat flux at the solid 
(r, 0) polar coordinates with 6 measured from 

surface 
the line joining the reference droplet 

(0) heat flux at the solid-liquid interface 
and its neighbor under consideration, 

4 
associated with 7’,“’ and T(O) 

Fig. 2 

Q total rate of heat flow from the solid to 
(5, q, 4) toroidal coordinates. 

one droplet 

Q (8) rate of heat flow to a droplet associated 
with the pairs of Tf”’ and Tp’ 

R radius of the base area of a droplet 
s,,s,,~, S, equations (42), (43) (58) and (59) 
t time 
T temperature distribution 

T” a constant of the dimension of 
temperature 

T, temperature jump across the liquid- 
solid interface of droplet A 

T 
A? 

TA due to droplet B 
difference between the average 
temperature of solid surface and the 
liquid-vapor interfacial temperature 

u velocity. 

Greek symbols 
CI liquid thermal diffusivity 

: 
equation (88) 
distance between a droplet and its 
closest neighbor 

A equation (90) 

rl0 9+7C 

9 droplet contact angle 

Superscripts 

(n) of order (R/6)” ; Tf’) and T$‘) 
superposed at the reference droplet 
will remove the nth-order term in TA 
contributed by the nth-order 
expansions of the Tie) fields associated 
with the surrounding droplets 

(n+m) of order (R/c~)“+~ ; Tf”+m) and Tr+“‘) 
superposed at the reference droplet 
will remove the (n + m)th-order term in 
T, contributed by the mth-order 
expansions of the Tr’ fields associated 
with the surrounding droplets 

(j+k+l) similar to (n+m),j+k and I 
replacing n and m, respectively 

(n), .i of order (R/S)” and angular dependence 
of cos j4. 

Subscripts 
cond of conduction 
conv of convection 
evap of evaporation 

1,s liquid, solid 
K=O ignoring droplet thermal interactions 
IIS hexagonal array, square array. 

Of main interest in this study is the calculation of 
heat transfer from the solid to the droplets and the 

NUEEhRE 
k, k,AT’ (1) 

corresponding heat transfer coefficient, h. In dimen- 
sionless form, it is given by the Nusselt number, Nu, In equation (1) above, q is the average heat flux at the 
defined by solid surface, k, the thermal conductivity of the liquid, 
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semi-inf%nite solid 

FIG. 1. An isolated droplet on the surface of a semi-infinite solid. The solid-liquid interface is a circular 
region of radius R. 

R the base radius of the droplets, and ATthe difference 
between the average temperature of the entire sohd 
surface and the temperature of the liquid-vapor inter- 
face. By taking into account droplet thermal inter- 
actions, anaiytical expressions for the Nusselt number 
will be derived. We will also investigate the effect 
of array type, droplet concentration, droplet contact 
angle, and solid conductivity on the Nusselt number. 

Admittedly, a periodic arrangement of identical 
droplets is rather specialized. A more realistic model 
would consist of a random arrangement of droplets 
with a spectrum of sizes. This random problem, how- 
ever, is exceedingly complex, and at present, analytical 
methods to treat it are yet to be developed. The present 
study of identical droplets arranged regularly may, 
therefore, be regarded as a first step towards a com- 
prehensive treatment of multiple-droplet systems. 

2. GOVERNING EQUATIONS 

For the model described above, the temperatures 
of the liquid and solid, T, and T,, respectively, satisfy 
Laplace’s equation 

VT=0 (2) 

V2T, = 0. (3) 

At the solid surface, i.e. z = 0, the following boundary 
conditions hold : 

T=T andkaT’=kdT” t * ’ az s dz ’ 

solid-liquid interface 

S-0 
aZ - 3 

(4) 

1 solid-vapor interface 

where k, and k, are the thermal conductivities of the 
liquid and solid, respectively. At the liquid-vapor 
interface, the boundary condition is that of constant 
temperature 

T, = constant. (5) 

Deep inside the solid, i.e. z --+ co, 

-k 3 - constant 
“as+- ’ (6) 

Due to the spatial periodicity of the mixed bound- 
ary conditions at the solid surface (Neumann con- 
dition over the non-wetted region, continuity con- 
ditions at the solid-liquid interface), a direct attempt 
to solve equations (2) and (3) for T, and T, will be 
very complicated. Therefore, an indirect approach 
based on the principle of linear superposition will be 
utilized. The method to be used is similar to that 
employed by Tio [12] in the study of thermal contact 
resistance. These methods are essentially an analytical 
corrective-iterative scheme. 

The method of this paper consists of two fun- 
damental steps. The first one is the analysis of a single 
droplet subject to various Dirichlet conditions at the 
solid-liquid interface. In spite of the geometrical com- 
plexity of a system composed of a spherical segment 
and a half-space, the problem is mathematically trac- 
table with the use of the toroidal coordinates. The 
other step involves the calculation of the thermal inter- 
actions of the droplets. A consequence of these inter- 
actions is that the condition of temperature continuity 
at the solid-liquid interface has to be satisfied approxi- 
mately. Nevertheless, accuracy up to O(K”~), where 
K is the fraction of the solid surface wetted by the 
dropiets, is attained through a formal pe~urbation 
expansion. Laplace’s equations along with the 
remaining boundary conditions are, however, sat- 
isfied exactly. In the ensuing sections, this method will 
be discussed in detail. 

3. ANALYSIS OF A SINGLE DROPLET 

The analysis of a single droplet on the surface of a 
semi-infinite solid (Fig. 1) was carried out by Sadhal 
and Plesset 121. The discussion presented in this sec- 
tion represents a modification and extension of their 
analysis. 

For an isolated droplet on the solid surface, the 
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governing equations and the boundary conditions are The boundary conditions (9)-( 11) are transformed 
as follows : into 

V* Tj”) = 0 in the liquid phase 

V* TAoI = 0 in the solid phase. 

At the liquid-vapor interface 

T/O’ = T ” = constant. 

At the solid surface 

(7) 

(8) 

(9) 

rl= 40: Tl”’ = T Y (15) 

(16) 

T/o, = T(O) 
b 

?=O: !!YO 
aq 

(17) 

(18) 

Tfo’ = T(o) an,j k, T = k, !?$?!, 
s 

e < R 

GO’ _ o 

(10) 

aZ 3 
Q > R. 

Deep inside the solid 

T(O) = 0. 
s (11) 

It should be noted that the boundary condition in (11) 
is that of a uniform temperature instead of a uniform 
flux (see equation (6)). This is necessary because a 
uniform flux in the far field would result in an infinite 
amount of heat flow into the droplet. It should also 
be noted that TV in (9) has a negative value since the 
far-field temperature of the solid is taken to be zero. 

Exact solutions to (7)-( 11) can be obtained by using 
the toroidal coordinates (5, q, d), which are related to 
the cylindrical coordinates (Q, 4, z) by the formulas 

]131 

R sinh 5 R sin rl 
e= cash &cos q’ 

z= 
cash 5 -cos q (12) 

where 0 < < < co, 0 < q < 277. The metric coefficients 
are given by 

h, = h, = 
R 

h, = 
R sinh l 

cash t--cos I]’ coshc-cosq’ 

(13) 

In this coordinate system, the solid-vapor interface 
corresponds to rl = 0 and the solid-liquid interface is 
given by q = R. The edge of the droplet corresponds 
to r = cc and the z-axis to 5 = 0. The liquid-vapor 
interface is given by q = lo = n+ 9, where 9 is the 
contact angle. 

Under the coordinate transformation given by (12), 
the liquid region is defined by 0 < 5 < co, n < q < q. 
and the semi-infinite solid region by 0 < 5 < cc, 
0 < rl < n. Laplace’s equation for these two regions 
(equations (7) and (8)) can be written as 

+A arl cash{-cosq* ( sinh 5 aTp 

> 

1 a* T,‘Z’ 

+(cosh~-cos~)sinh~~=O’ (14) 

(5, r/) = (0,O) : T:” = 0. (19) 

A convenient form for the temperature distribution 
is 

Tf” = T,-T,(2cosh~-2c0s~)“* 

X 
s 

a’ 
E”‘(7) sinh (q. -q)zP,_ ,,*(cosh 5) d7 

0 

(20) 

and 

T;” = T,(2coshl-2cosq)“* 

I 

a 
X ITo’ cash qzP,_ ,,,(cosh 5) dr (21) 

0 

where P, _ ,,* is the Legendre function of the first kind, 
of complex degree 

W’(7) = 
sinh 777 sech’ 117 

[tanh 777 tanh 97 + ~1 cash 97 (22) 

and 

p sech* n7 

lTo’(‘) = [tanh ~7 tanh 97 + ~1’ (23) 

Here, p = k,/k, is the liquid-to-solid conductivity 
ratio. In the course of obtaining the solution, the 
following integral expansion [ 131 is used : 

1 

(2 cash 5 - 2 cos v,) “’ 

= s m cash (n - qP)7 
Pi,- ,i2(cosh 5) dr 

0 cash ret 

(0 < qp < 2~). (24) 

The temperature of the dry solid area is needed in 
later analysis. To this end, it is expanded in the form 

T:“(q = 0) = T,[Alo’,/4(,f;) 

+A~~)(~~+,+~+ -- j. (25) 

It also follows from (21) that 

Tj”(q = 0) = TJ2cosh t-2)“’ 

s 

m 
X l-Ic0)(7)Pn_ ,,,(cosh 5) dt. (26) 

0 
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Using the series expansion of ref. [ 131 

P,,_,,z(cosh5) = I-$-$+cosh{-1) . 

+ v+ l/4)(2* +9/4) 
22 - (2!)2 

(cash {--I)* 

- (r2+l/4)(;tpj;!(r2+25/4) (cash 5_1)‘+ . _ _ 

(27) 

which is valid for cash r < 3, equation (26) can be 
rewritten, after an extensive amount of algebra, as 

(28) 

Comparing equations (25) and (28), we see that the 
temperature of the dry solid surface is given by 

T!“(q = 0) = T”[A$‘(~)+A~“(~)j 

+A~O)(~~+A~O)(~~+ ...I (29) 

where 

Next, we calculate the total rate of heat flow Q(O) 
from the solid into the droplet. The heat flux at the 
solid-liquid interface is given by 

9 - 
(0) - _k 

[ 1 
_!_ f??? 

s h, all q=n 

= -!$(2coshrf2)‘* 

s 

a: 
X z sinh n711’“‘(7)PiT_ ,12(cosh {) dz. (34) 

0 

Integrating (34) over the base area of the droplet, we 
obtain Q(O) as 

‘% Q’O’ = 2n 
5 

q”‘[h~~~l~=~ d5 
0 

= -4nRksTV 7 sinh XTII(~) (7) dz 

s m sinh 5 

’ o (2coshr+2)“’ Pi,- ,,z(cosh C) d5. (35) 

The inner integral in (35) is the zeroth-order Mehler- 
Fock transform of (2 cash 5+2) ‘j2, and is given in 
ref. [14] as l/r sinh 777. Thus, 

Q”’ = -2nRk T A’,” S” . (36) 

4. TWO-DROPLET INTERACTIONS 

While the toroidal coordinate system fits nicely into 
the geometry involving one droplet on the surface of 
a semi-infinite solid, the presence of another droplet 
introduces serious complications. For one thing, there 
exists no orthogonal coordinate system which fits into 
the geometry of two droplets. Thus, both the toroidal 
and cylindrical coordinate systems are employed in 
this paper. 

Consider two droplets, labeled A and B, evap- 
orating on a solid surface as shown in Fig. 2. In the 
limit of b -+ co, both droplets have no thermal effect 
on each other. This suggests that, for finite b, we may 
start the two-droplet analysis with the temperature 
distributions given by the pair of (20) and (21). Thus, 
to each of the two droplets, we superpose a pair of 
i”[‘) and ‘Z’i’), and consider the effect of one droplet 
on the other. 

The temperature distribution over contact area A, 
i.e. the base area of droplet A, contributed by the 
Ts”) associated with droplet B is, according to equa- 
tion (291, given by 

TAB = A(~)T”(~)+A~‘)T”(~~ 

Using the Legendre polynomial identity 
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Q = (r” + bs - 2br cos 6)“’ 

semi-infinite solid 

FIG. 2. Two droplets of base radius R on the surface of a semi-infinite solid. The two circular regions are 
the wetted areas of the solid surface. 

and its derivatives 

1 R” 

= 1*3...(m-2) b 0 

X 

I)/2 d’rn- ‘“‘p”(x) 

d_@- 1)/z (39) 
x=mss 

where m = 3,5,7,. . . , we expand equation (37) about 

the center of contact area A in terms of the cylindrical 
polar coordinates (r, f?), and obtain 

+2Ocos 28+9)($]$~ 

+ 54y f c0se+~A:0)(7c0s3e+9c0se) f 1 0 
3 

0 
+ & A’,(“(63 cos 58+35 cos 38 

+$4yy2h0s4e+28cos2e+15) f 
4 

0 

+ & A\“(231 cos 6e+ 126 cos 48 

+ 
[ 0 

DAY) f cos e+ F ~p(3 cos 3e+ 5 cos e) 6 3 
0 

+ &A\‘)(429 cos 7e+231 cos 58 

(40) 
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While the pair of r,C”) and Tie’ associated with 
droplet A satisfies the continuity of temperature and 

T,, = A’,“’ TVs,(N) ; 
0 

heat flux at the solid-liquid interface of A, the pres- 
ence of TAB destroys the continuity of temperature at 
the base area of droplet A. In effect, TAB given by 

.[A!O’+$R(~‘(~~]T,sl(N)(~r 

(40) represents a temperature jump at the solid-liquid 
interface of A ; this discontinuity in temperature is 
caused by droplet B. The continuity of heat flux, how- 

+[{a:“I+~~~o)(~~+~A(O’(~~}s,(N) 

ever, is preserved since T!‘) associated with droplet B 
satisfies the no-flux condition around B. To restore 
the continuity of temperature, we must superpose 

+{~~(~)(~~cos4$)s,,(N)]T”(~r 

additional temperature fields at each droplet. Thus, 
T,“) and Tie) are actually the leading-order terms of 
the series of temperature distributions in the liquid 

+[{A,,~A,(~~+~~~o~(~~ 

and solid phases, respectively. 
In the next two sections, this basic principle will be 

applied to systems of multiple droplets arranged in a 
+~A/“(frjs,(N)+{~~~o)(~r 

square array and a hexagonal array, respectively. Due 
to the symmetry of the droplet arrangements, the mul- 
tiple-droplet problem is actually simpler than the two- 

+!$F’ f 
6 

01 
s,,,(N)cos 44 T, ; 

7 
10 

droplet model. 
+o ; 

9 

0 
(41) 

5. SQUARE ARRAY OF DROPLETS where 

To analyze the problem of droplets arranged in a 
square array, consider a large square of sides 
(2N+ 1)s on the surface of the solid and the (2N+ 1)’ 

s,(N) = (4+2’4-‘“2) f ; 
“= I 

droplets inside it, as shown in Fig. 3. Later, the limit N--l N 1 
of N + 00 will be taken, thus recovering the infinite +* J, J+, (m*+n*)“* (42) 
number of droplets in a square array arrangement. 
The droplet at the center of the square, labeled A, is 
taken as the reference droplet. 

Sj,4(N) = (4-2(4-j)/*) 2 L 
II=, n’ 

Now, at each droplet inside the square, we super- 
pose a pair of the leading fields Tj”) and r$‘). Then, 
the temperature jump at ;he solid-liquid interface of 
droplet A is given by 

N--l N 

+8 E, ,=;+, (M*+n*)j’* 
’ [2($&l]. 

(43) 

FIG. 3. A square array of droplets on the surface of a semi-infinite solid. The solid-liquid interfacial regions 
of radius R are shown. The reference droplet, A, is located at the center of the square. A typical unit eel1 

of the array is also shown. 
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Equation (41) represents the summation of (40) over 
each of the droplets inside the square, A being 
excluded. The single sums in equations (42) and (43) 
correspond to the summation over all the droplets on 
the axes and the diagonals of the square, excluding A, 
while the double sums represent those located off the 
axes or diagonals. Since the droplets surrounding A 
are arranged in four-fold symmetry, all the &depen- 
dent terms in equation (40), except those of the type 
cos 40, cos 80, etc., cancel out. For N -+ co, s,(N) 
becomes unbounded. However, this problem can be 
taken care of quite easily [ 121. 

Now, we are going to remove the temperature jump 
T,,, equation (41), from the solid-liquid interface of 
the reference droplet in sequential orders of (R/6). 
The first-order term in (41) can be removed by adding 
T[,&) and T$ to droplet A. For an isolated droplet 
(Fig. l), these first-order fields satisfy Laplace’s equa- 
tion 

V’T{,;) = 0, 0 < 5 < co, rc < r) < no (44) 

V’T:,? = 0, 0 < 5 < co, 0 < r/ < K. (45) 

T,c;) = Ts’,‘s’ 

+ A’P’ + ! A’,O’ 
4 (co~~~~l)2]~~~(N)(~)I. (54) 

The derivation of the temperature distributions Tf.3,’ 
and TL.2 is similar to that of T{‘) and Ti’), and will 
not be presented here. A detailed treatment of this is 
given in ref. [12]. While the third-order pair of T@ 

and Ti?,) added to droplet A deletes the discontinuity 
of temperature caused by the third-order term in (41), 
the same pairs added to the remaining droplets will 
introduce a fourth-order temperature jump to the 
solid-liquid interface of A. To move the temperature 
jump to O(R/6)‘, we superpose a few pairs of tem- 
perature fields at droplet A (and each of the rest) on 
the existing Tf’), Tie), Tf,$, TL,‘,‘, T@, and Ti.‘,‘. These 
additional temperature distribut’ions are T[,i+ I), 

The boundary conditions are 

q = qo: T!!) = constant 

n ==: k,dW _ ke:fz 

P21. 
In summary, by superposing the temperature fields 

(46) . a . , 
7-f”’ T’o’ TI(;) T!v, T,c;) TA3s), T,c’,+ 0 

. 

(47) ~‘~ 9 

+5,+ ii 

T{,)s+3+6 T;;+3,+jiI) +{.;I T;~,‘T;,;h 7 3 
-I 

-- .-I arl -, aq \ , 
and TLL+‘) at each of the droplets inside’the square, 

Tf;) = T:‘,+A’,O’T,s,(N) !! 
0 

we obtain the temperature jump at the solid-liquid 

6 
(48) interface of the reference droplet as 

(49) 
TA=o ;‘, 

0 

(& q) = (0,O) : Tz.1, = 0. (50) Furthermore, TA remains finite as N + co. The Nus- 

The solution to (44-(50) is easily determined to be selt number, corresponding to these temperature dis- 
tributions, is given by 

T@ = A’,” T.,s , (N) 

and 

T$’ = 0. 

(51) __~ 
Gu - 2& 2 

+ !! q4’K’/2 

(52) 

The total rate of heat flow Q$‘) from the solid into the 
droplet is given by 

Qi” = 0. (53) 

With T/,4) and Ti,‘, added to the reference droplet, the 
first-order term in (41) is now deleted. Since each of 
the droplets in an infinite regular array has the same 
temperature distribution, the same pair of T,(A) and 
T$,‘, must also be added to each of the remaining 
droplets inside the square. However, these pairs of 
Tj,$ and T$’ will not introduce any temperature 
jumps to the solid-liquid interface of droplet A. The 
third-order correction to (41) is achieved by adding a 
pair of T[,3,’ and T, !g to droplet A. For an isolated 
droplet on the surface of the solid (Fig. I), these 
temperature distributions satisfy (44)-(50), condition 
(48) being replaced by 

1 c\4jK5/2 

P 
- ZAio,[+A(;‘A\o’-3A’,0’A\o’ 

1 

2A’P’ + 50 
A’,O’A’P’ 

A ‘,O’ 1 ~$4~~712 

+ o(lc8’2). (56) 

In equation (56) above, K is the area fraction of the 
solid surface wetted by the droplets and is equal to 
nR2/d2. We have also used the notation of 

C(4) = s, 
” g/ 2 
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where the superscript (4) signifies summations over a 
square array, and 

s , =;m, 
-[ 

s,(N)-(8N+4)lntanF 1 (58) 
S, = $“, s,(N), j = 3,5,. . . . (59) 

By numerical evaluation, these various array sums 
are found to be S, = -3.90026, & = 9.03362, S, = 
5.09026, and S7 = 4.42312. 

For the sake of brevity, we have left out the lengthy 
development leading to formula (56). The interested 
reader may refer to ref. [ 121 for the detailed treatment. 
Here, it suffices to point out that the right-hand side 
of equation (56) is the first six terms of the complete 
power series expansion in K”*. 

6. HEXAGONAL ARRAY OF DROPLETS 

The analysis of the problem of a hexagonal array 
of droplets is similar to that of a square array. First, 
we consider a large hexagon of sides (N+ l/2)6 on the 
solid surface and the (3N2+3N+ 1) droplets inside 
the hexagon (Fig. 4). Later, we let N --* a), and recover 
an infinite number of droplets arranged in a hexagonal 
array. 

At each of the droplets inside the hexagon, we 
superpose a pair of the leading-order temperature 
fields 7’f”) and Tz”). Then, the temperature jump at 
the solid-liquid interface of droplet A located at the 
center of the hexagon is 

TA = A’P’T,h, (I?) ; 0 

I (N + l/2)6 

(60) 

where 

(61) 

hj,6(N) = 6 Ii $ +6$: ,=?I+, (m*_m~+n*)“* 
“= I 

,_ 27 rn2n2(rn-n)2 
2 (m2-mn+n2)3 1 ’ (62) 

Equation (60) represents the summation of (40) over 
each of the droplets inside the hexagon, A being 
excluded. The single sums in (61) and (62) correspond 
to summing over the droplets located on the diagonals 
of the hexagon while the double sums represent the 
remaining droplets. Of all the B-dependent terms in 
(40), only those of cos 68, cos 128, etc. remain in equa- 
tion (60) since the droplets surrounding A are 

, 612, 

l e l e l 

eeoooe 

l e 0 0 l 

FIG. 4. A hexagonal array of droplets of base radius R on the surface of a ~mi-infinite solid. The solid- 
liquid interfacial areas are shown. Tbe droplet at the cznter of the hexagon, labeled A, is the reference 

droplet. A typical unit cell is also shown. 
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arranged in six-fold symmetry. Like s,(N), h,(N) 
becomes unbounded as N + co. 

Equation (60) shows that temperature dis- 
continuity at the solid-liquid interface of droplet A 
occurs at O(R/6). To move it to O(R/6)“, we need 
additional pairs of temperature fields for each of the 
droplets inside the hexagon. These temperature dis- 
tributions are: T,‘#, T!#, T[2, T!2, TIC’) Tz3L’) 
T(5) T(5) T{U+ I)’ 2-r-$1) 7423) ’ 7-!3”+‘3) &u+>+ 1)’ 

I,H T S,” ? 
7?3+3+1) fl:7H’ &), ;;(li, 796, 7’{7,; 11, ;&T!;+ 1)’ 

Ai:in, the rkader’is referred to ref. ‘[12] for the heri- 
vation of these temperature distributions. 

After superposing the temperature distributions 

at each droplet inside the hexagon, we obtain the 
temperature jump at the solid-liquid interface of 
droplet A as 

TA=O tn. 
0 

(63) 

The Nusselt number is identical to (56), except that 
the array sums C!‘) are replaced by the corresponding 
C!“). For a hexagonal array, 

C(6) = _ ( > J3 nl2H, 
n 2 &2 (64 

The array sums H,, are in turn given by 

H, = li_% [h,(N)-(6N+3) In 31 (65) 

H, = li_li h,(N), j = 3,5,. . 

These array sums are evaluated numerically to be 
H, = -4.21342, H3 = 11.0342, H, = 6.76190, and 
H, = 6.19524. For a hexagonal arrangement, the area 
fraction of the solid surface wetted by the droplets, a, 
is equal to 2nR2/a2J3. 

7. RESULTS AND DISCUSSION 

7.1. Validity of assumptions 

Dropwise evaporation is a complex phenomenon. 
A complete formulation of the problem must include 
all three transport mechanisms of momentum, heat, 
and mass. In addition, it is generally a transient prob- 
lem due to the changing solid-liquid and liquid-vapor 
interfaces. However, as far as heat transfer in the low 
superheat regime is concerned, the model of the pre- 
sent study is adequate, as shown by the examination 
below of the mechanisms involved, their relative 
importance, and the validity of the assumptions. 

Of the three phases, only the solid and liquid have 
been incorporated into the analysis of the present 
study. The vapor phase is thermally decoupled from 
the solid by the assumption of adiabatic solid-vapor 
interface. At the liquid-vapor interface, liquid satu- 
ration temperature is assumed, following Plesset’s 
results [15, 161, which show that the temperature of 

an evaporating liquid surface can be approximated 
with that of the surrounding vapor. 

In the liquid phase, three types of motion can be 
identified : evaporation-induced flow, liquid motion 
due to the buoyancy effect, and surface-tension-driven 
flow. To see the effect of evaporation-induced liquid 
motion on heat transfer, suppose first that conduction 
is the dominant mode of heat transfer. A conductive 
heat flux of qcond crossing the solid-liquid interface 
and diffusing towards the liquid-vapor interface will 
generate a vapor mass flux ti leaving the droplets. In 
terms of order of magnitude, 

(67) 

The mass flux ti will in turn generate liquid motion 
with velocities u of order of magnitude of 

qmnd 

u-F. 

The convective flux corresponding to u is then given 

by 

CAT 
9CO”” - pc,,uAT N + qcond. (69) 

For water at 100°C and AT of 5”C, we then have 

qo,, * o.ol%md, and the effect of evaporation- 
induced convection can be ignored. Since the solid- 
liquid interface of an evaporating sessile droplet is 
warmer than its free surface, the possibility of buoy- 
ancy-driven convection exists. Furthermore, fluid 
motion within the droplet may also be induced by 
surface-tension gradients along its free surface. In this 
regard, stability analyses have been carried out 
recently by Yang and co-workers [17, 181. From the 
analyses of Pearson [ 191 and Nield [20], one can con- 
clude that for thin liquid layers, thermocapillary 
effects are more important than buoyancy. For water 
with thickness of 1 mm or less, the onset of cellular 
motion can be attributed to thermocapillary effects 
rather than buoyancy. Even then, with the high sur- 
face tension of water such motion is rather weak. In 
a study of condensing droplets, Lorenz and Mikic [21] 
showed that the effects of thermocapillary flow on 
heat transfer were insignificant. The fact that the con- 
tribution from convection, either driven by the buoy- 
ancy effect or surface-tension gradients, to heat trans- 
fer is negligible is primarily due to the large conductive 
heat fluxes. For example, consider a system of water 
droplets evaporating on stainless steel in the neigh- 
borhood of the boiling point of water. Then, neglect- 
ing droplet thermal interactions, the average heat flux 
crossing the solid-liquid interface of a droplet with 
9 = n/3, R = 0.5 mm, and AT = 5°C is about 90 kW 
m- 2 (see equation (89)). 

Thus, in heat transfer analyses of dropwise evap- 
oration, only conduction needs to be considered, since 
radiation effects are generally negligible. Further- 
more, transient effects in conduction can be ignored, 
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since the time it takes a droplet to change by an 
amount comparable to its original size is much longer 
than that needed by heat diffusion. Consider, for sim- 
plicity, a liquid layer of thickness a evaporating on a 
solid surface. Let AT be the difference in temperature 
between the solid and the free surface of the liquid 
layer. Then, the conductive heat flux flowing into the 
liquid is given by 

k,AT 
&end --. 

a (70) 

Corresponding to &,d, the rate of change of the film 
thickness is 

&_k,aT 
pla ’ (71) 

Thus, the time it takes to evaporate the layer by an 
amount comparable to its original thickness is given 

by 
a 

t 
a*pa 

cvap-_Ci--. k,AT (72) 

On the other hand, the time scale of heat diffusion is 
given by 

a2 
t cond N - 

a 

where a is the liquid thermal diffusivity. Thus, 

(73) 

where the first term on the right-hand side represents 
the leading-order approximation to A\‘) and the 
second the correction term. Also, the first term can 
be evaluated exactly and a detailed calculation yields 
2(&%r) ‘/’ arctan (9/fl~) I/‘. The second term is of 
Ob) ; it in turn can be written as an order-p term plus 
a higher-order correction. Thus, after some algebra, 
we obtain 

-:[X;-l](f~2+O[@~z] (76) 

where 

s OD 
a, = 

sech’ rrr[(Q/rc) tanh xr - tanh &] dz _ 1. 

0 tanh’ nr tanh 97 A 

(77) 

Similarly, 

CAT 
t cond * p t_ - 0.01 t,, 

a 
(74) 

for water at 100°C and AT of SC, and the transient 
effects in conduction caused by evaporation can be 
ignored. 

Another assumption for the model of the present 
study is that the droplets have the shape of a spherical 
cap. For droplets of base radius of 0.5 mm or less, the 
assumed shape is quite reasonable because the effects 
of surface tension are dominant over those of gravity. 
In fact, the Bond number, Bo 5 pgR’/a, is only about 
0.04 for water droplets of base radius 0.5 mm. 

7.2. Asymptotic expansions for p CC 1 

As stated earlier, the main objective of this study is 
the derivation of the Nusselt number as a function of 
droplet arrangement, droplet con~ntration, droplet 
contact angle, and solid thermal conductivity. For 
9 # 0 and p << 1, analytical estimates for the integrais 
in (30)-(33) can be obtained. For fi -* 0, the dominant 
contribution to the integral in (30) takes place near 
r = 0. Therefore, we can replace tanh QT with 
(9/n) tanh xr. Thus, we write 

A’,@ s m 

= 2/.l 
sech’ rrz 

dr 
o p + (9/n) tanh’ xz 

sech’ ntl@/n) tanh nz _. 
- tanh St] tanh rcz 

[tanh rrr tanh 9r+p] dr, (75) 

+o y K 
312 

> 1 
where 

55 
- --r4+r6 

4 

Substituting the estimates for A(F), A$‘), A\‘), 
A\‘) into (56) and rearranging, we obtain 

+ f C$4)K3!2 + g C’p’K512 + !$ ct74)K7/2 + 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

and 

. . . 1 
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+;o T. 0 
A leading-order estimate of ug is 

(84) 

which means that C’,4)~‘12 cannot be ignored in com- 
parison with -2a,9, even at the relatively small value 
of K = 0.1. Then, it is seen from (84) that for k, CC k,, 
droplet thermal interactions start to take place after 
the leading order in ,B”‘. Thus, for moderate con- 
ductivity ratios (i.e. ,U N O.Ol), the interactions 
between the droplets through the solid can be quite 
important. 

When p + 0, droplet thermal interactions through 
the solid can be neglected because the effect is short- 
range in terms of the distance from the drops. 
However, the solid thermal conductivity must still be 
incorporated into the calculations of heat transfer. In 
this case, (84) reduces to 

Q = 2nR ; 
0 

“2(k,k,)“2M-. 

For a fixed Ic,, the rate of heat flow into a droplet 
becomes infinite as p --) 0. The reason is as follows : 
when p+ 0, the solid surface becomes isothermal, 
causing a temperature discontinuity at the edge of the 
droplet. As a result, the heat flux at the contact line 
becomes singular. This singularity is non-integrable, 
and leads to an infinite Q. 

It has been shown rigorously [22] that a tem- 
perature jump at the edge of a droplet results in an 
infinite rate of heat flow through the droplet. Thus, 
to avoid an in&&e heat transfer rate, the boundary con- 
dition of an isothermal solid surface shouid never be 
employed. Instead, the surface tem~rature must be 
allowed to vary so that at the contact line, it is equal 
to that of the liquid-vapor interface. Clearly, this can 
be achieved only with the incorporation of the solid 
into the analysis. In fact, the calculations performed 
by Sadhal and Plesset [2] for a single hemispherical 
droplet show that the temperature at the solid-liquid 
interface is non-uniform. In view of the fairly common 
practice of modeling dropwise evaporation with drop- 
lets on isothermal solid surfaces and excluding the 
solid material, these points are indeed worthy of con- 
sideration. 

Table I. Expression for the coetbcients of the series expan- 
sions of l/Nu, FFZ = 4,6 

5 c$m) 

6 -[fA$‘A\*) ~3A~O)A~O) +4A~o)A~*) -A$@A\*)] (C\=t)’ 

1.3. Numerical results 
While (84) is valid for small p such that 

(7&S) ‘:2 << 1, the integrals in (30)-(33) must, in gen- 
eral, be evaluated numerically. Also, there is practical 
interest in knowing Nu, or the heat transfer coefficient, 
h, for that matter. We have summarized the numerical 
results in tabular forms. The Nusseh number 
(Nu = hR/k,) can be expressed as 

+G,~c~‘~+G,K~‘*~O(~C~‘~)~ (87) 

where the coefficients G, are given in Table 1. The 
numerical values of the array sums Cim) are given in 
Table 2. In Tables 3-6, the coefficients A(F), A$‘), 
A$‘), and A\‘), respectively, are tabuiated as functions 
of the conductivity ratio and droplet contact angle. 
For a given K, the Nusselt number is then readily 
calculated using (87). However, since the expressions 
for the Nusselt number involve an infinite series, we 
first have to determine the appropriate number of 
terms needed to obtain accurate results. For K = 0.7, 
which represents the case of nearly touching droplets 
arranged in a square array, n/l2 Q 9 < n/2, and 
0.001 < ,u < 1, the difference between using the first 
four terms and the first six terms of (87) is always less 
than 4.2%. Furthermore, this relatively large differ- 
ence occurs only when ,u - 1. For water droplets evap- 
orating on most metafs, p - 0.01, and for p = 0.01, 

Table 2. The array sums Cp) 

m = 4 (square) 
--__.__ ~- 

cp -2.20049 
C$j’ 1.62232 
Cl”’ 0.29098 
C(7m’ 0.08048 

m = 6 (hexagon) 
-.~ 

-2.21220 
1 s9703 
0.26979 
0.06814 
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Table 3. The coefficient A’:’ as a function of 9 and k 

P 9 = n/l2 9 = x/6 9 = s/4 9 = n/3 9 = n/2 

0.001 0.09961 0.07243 0.05990 0.05228 0.04312 
0.002 0.13554 0.09966 0.08284 0.07254 0.06007 
0.004 0.18168 0.13564 0.11355 0.09987 0.08316 
0.006 0.21371 0.16136 0.13580 0.11983 0.10021 
0.008 0.23864 0.18185 0.15371 0.13602 0.11414 
0.010 0.25916 0.19905 0.16889 0.14980 0.12609 
0.020 0.32817 0.25949 0.22330 0.19985 0.17017 
0.040 0.40104 0.32867 0.28800 0.26079 0.22546 
0.060 0.44259 0.37136 0.32949 0.30080 0.26287 
0.080 0.47048 0.40171 0.35983 0.33061 0.29139 
0.100 0.49081 0.42487 0.38353 0.35424 0.31442 
0.200 0.54473 0.49160 0.45498 0.4276 1 0.38872 
0.400 0.58300 0.54545 0.51704 0.49457 0.46103 
0.600 0.59862 0.56964 0.54661 0.52781 0.49897 
0.800 0.60716 0.58356 0.56423 0.54812 0.52293 
1.000 0.61256 0.59265 0.57600 0.56192 0.53960 

Table 4. The coefficient A$” as a function of 9 and p 

P 9 = K/l2 9 = n/6 9 = l-t/4 9 = a/3 9 = s/2 

0.001 0.024068 0.017669 0.014673 0.012838 0.010614 
0.002 0.032311 0.024073 0.020126 0.017682 0.014693 
0.004 0.042517 0.032320 0.02727 1 0.024095 0.020162 
0.006 0.049333 0.038057 0.032334 0.028690 0.024132 
0.008 0.054475 0.042530 0.036339 0.032355 0.027333 
0.010 0.058594 0.046213 0.039678 0.035435 0.030047 
0.020 0.071635 0.058609 0.051232 0.04627 1 0.039791 
0.040 0.083847 0.071643 0.064042 0.058677 0.051385 
0.060 0.089962 0.078983 0.071660 0.066302 0.058801 
0.080 0.093665 0.083833 0.076906 0.071688 0.064203 
0.100 0.096139 0.087307 0.080796 0.075767 0.068400 
0.200 0.101629 0.09607 1 0.091280 0.087234 0.08083 1 
0.400 0.104391 0.101527 0.098601 0.095858 0.091093 
0.600 0.105186 0.103398 0.101380 0.099363 0.095641 
0.800 0.105526 0.104284 0.102783 0.101211 0.098183 
1 .ooo 0.105704 0.104781 0.103605 0.102329 0.099789 

Table 5. The coefficient A\‘) as a function of 9 and p 

P 9 = n/l2 9 = x/6 9 = x/4 9 = n/3 9 = n/2 

0.001 0.0133078 0.0098175 0.008 1700 0.0071570 0.0059254 
0.002 0.0177421 0.0133092 0.0111601 0.0098215 0.0081768 
0.004 0.0231240 0.0177441 0.0150346 0.0133156 0.0111717 
0.006 0.0266402 0.0207845 0.0177476 0.0157929 0.0133270 
0.008 0.0292447 0.0231257 0.0198723 0.0177528 0.0150526 
0.010 0.0312967 0.0250330 0.0216289 0.0193871 0.0165064 
0.020 0.0375494 0.03 12935 0.0275867 0.0250396 0.0216524 
0.040 0.0429275 0.0375345 0.0339223 0.03 12844 0.0275993 
q.060 0.0453420 0.0408320 0.0375114 0.0349694 0.03 12796 
0.080 0.0466607 0.0428904 0.0398806 0.0374825 0.0338862 
0.100 0.0474546 0.0442880 0.0415696 0.0393249 0.0358601 
0.200 0.0487874 0.0473797 0.0457143 0.0441239 0.0413680 
0.400 0.04894 11 0.0486960 0.0479860 0.0471185 0.0453283 
0.600 0.0487808 0.0488799 0.0485575 0.0480360 0.0467839 
0.800 0.04863 19 0.0488558 0.0487205 0.0483877 0.0474614 
1.000 0.0485142 0.0487848 0.0487497 0.0485298 0.0478 155 
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Table 6. The coefficient A$‘) as a function of 9 and p 

0.001 
0.002 
0.004 
0.006 
0.008 
0.010 
0.020 
0,040 
0.060 
0.080 
0.100 
0.200 
0.400 
0.600 
0.800 
1.000 

Nu 

0.0091359 
0.0121235 
0.0156994 
0.0179993 
0.0196803 
0,0209886 
0.0248597 
0.0279618 
0.0292146 
0.0298203 
0.0301331 
0.0303797 
0.0299121 
0.0296480 
0.029428 I 
0.0292730 

0.0067621 0.0056354 0.0049408 0.0040944 
0.0091364 0.0076766 0.0067638 0.0056386 
O.OI21239 0.0103016 0.0091387 0.0076815 
0.0141511 0.0121247 0.0108108 0.0091433 
0.0156988 0.0135428 0.0121260 0.0103081 
0.01694~ 0.0147082 0.0132171 0.0112852 
0.0209825 0.0186051 0.0169455 0.0147104 
0.0248431 0.0226241 0.0209605 0.0185882 
0.0267790 0.0248 I67 0.023258 1 0.0209313 
0.0279275 0.0262146 0.0247822 0.0225561 
0.0286675 0.0271776 0.0258703 0.0237625 
0.0300721 0.0293349 0.0285174 0.0269670 
0.0303098 0.0301829 0.0298536 0.0289834 
0.0301159 0.0302020 0.0300828 0.0295601 
0.0299105 0.0300824 0.0300667 0.0297401 
0.0297372 0.0299447 0.0299841 0.0297770 

--..-.._-..-..-__ 
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FIG. 5. Nusselt number NM for a square array of droplets. The conductivity ratio is p = 0.0 1. 
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wetted fraction of solid surface, c 

Frc. 6. Nusselt number Nu for a square array of droplets with a contact angle of 9 = x/4. 



FIG. 7. Deviation from Nu,,~, y, of a square array of droplets. The conductivity ratio is ,u = 0.01. 
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the difference never exceeds 1.4%. Thus, for practical 
purposes (with the restriction of x/12 < 9 < n/2), 
equation (87), in which the actual errors may be 
smaller than the figures cited above, is adequate. 

Figures 5 and 6 show the dependence of the Nusselt 
number on IC, p, and 9 for a square array of droplets. 
It is seen that Nu decreases when 9 or p increase (note 
that Fig. 6 is a plot of p”*Nu vs K). Furthermore, the 
Nu-id- relationship is almost linear for small values 
of /A and large contact angles, thus qualitatively con- 
firming (84). More generally, inspection of (87) 
reveals that the dependence of Nu on IC consists of 
a leading term proportional to K and higher-order 
interaction terms. This leading term simply states that 

2001 

the average surface heat flux increases as the number 
of droplets (of a fixed size) on the solid surface 
increases. This heat flux is, however, augmented by 
the higher-order interaction terms, which may become 
significant for large values of K, yielding the actual g. 
Thus, the quantity y, where 

NU-NU,,, 
yz 

Nu,=, ’ (88) 

can be regarded as a measure of the strength of droplet 
thermal interactions. In (88) Nu,,~ is given by 

2A’;’ 
Nu,,~ =-K 

P 
(89) 

1.50 I I I I I I 

1.25 - 

0.2 0.3 0.4 0.5 

wetted fraction of solid surface, K 

FIG. 8. Deviation from Nu,,,, y. of a square array of droplets with a contact angle of 9 = 1~16. 
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FIG. 9. Relative difference in Nusselt number, A, between a hexagonal and a square array of droplets with 
a conductivity ratio of p = 0.01. 

which is the result obtained by neglecting droplet 
interactions. As expected, y increases with K (Figs. 7 
and 8). Furthermore, for a fixed K, y decreases when 

p decreases but increases with decreasing 9. Thus, 
droplet thermal interactions become stronger as the 
contact angle or solid conductivity decreases. From 
Fig. 8, we can infer that droplet interactions are neg- 
ligible for the entire range of 0 < K < 0.7 when p -+ 
0. This is in accordance with the asymptotic analysis 

of (V/Q) “* + 0 carried out earlier. However, for the 
commonly encountered cases of p - 0.01, the inter- 
actions are quite significant, even at moderate values 

of K (see Fig. 7). In Figs. 9 and 10, we plot the relative 
difference in Nu between a square array and a hex- 
agonal array of droplets, 

A= 
Nuu - Nu, 

Nus ’ (90) 

as a function of K, 9 and p being the parameters. As 
expected, the effect of K, 9, and p on A is qualitatively 
similar to that on y. This is so because A is a function 
of the strength of droplet interactions. When y << 1, 
the effect of droplet spatial arrangement on the Nus- 
selt number is negligible. On the other hand, A may 

A x lo2 

\ 

0.0 T . 0.2 0.3 0.4 0.5 0.6 0.7 

wetted fraction of solid surface, c 

FIG. 10. Relative difference in Nusselt number, A, between a hexagonal and a square array of droplets 
with a contact angle of 9 = ~/4. 
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become significant when droplet interactions become 
stronger. From Figs. 9 and 10, we can conclude that 
a hexagonal array and a square array of droplets 
with n/12 d 9 < n/2 and p - 0.01 or smaller yield a 
practically identical Nusselt number. 

8. CONCLUSION 8. 

This work represents a first theoretical attempt to 
deal with the problem of a large number of droplets 
evaporating from a heated surface. While we have 
obtained expressions for the Nusselt number, the 
major challenge of dealing with a spatially random 
distribution of droplets with a spectrum of sizes, 
which will be encountered in the analyses involving 
droplet sprays, still remains. Further effort for both 
low and intermediate superheat regimes is presently 
needed to develop proper practical models. The stat- 
istical approach to this class of problems is currently 
under examination. 
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EVAPORATION DE GOUT-TES: ANALYSE THERMIQUE DES SYSTEMES 
MULTIGOUTTES 

RCnm&-Gn etudie le transfert de chaleur dune surface chaude soiide vers des guottelettes qui s’evaporent 
dans un regime de faible surchauffe, les gouttelettes restant coiit?es I la surface sans nucleation. Le modeie 
concerne un arrangement &gnlier de gouttelettes identiques &ant en interaction thermique avec le solide. 
On obtient des expressions ana~ytiques pour le nombre de Nusselt impijquant une serie puissance de K”~, 
ou IC est la fraction de surface so&de mouill&e par les gouttelettes. On trouve que Ies interactions de 
goutteiettes ne peuvent pas ttre ignomes en general. La force de ces interactions est fonction de I’angle de 

contact de la gouttelette, de la conductivite du solide et de la concentration en gouttes. 
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TROPFENVERDAMPFUNG : THERMISCHE UNTERSUCHUNG EINES SYSTEMS AUS 
VIELEN TROPFEN 

Zusammenhssung-In der vorliegenden Arbeit wird der Warmeiibergang von einer beheizten festen Ober- 
fllche an TrBpfchen, die im Bereich der kleinen Uberhitzung verdampfen, untersucht. Dabei haften die 
Triipfchen an der Oberflache, ohne daI3 sich Blasen bilden. Das Model1 besteht aus einer regelmiiI3igen 
Anordnung von gleichen Tropfchen, die iiber die feste OberflLche in thermischer Wechselwirkung 
miteinander stehen. Analytische Ausdriicke fur die Nusselt-Zahl, die den Faktor K’!* enthalten, werden 
hergeleitet. Dabei ist IC der mit Tropfchen benetzte Anteil der festen Oberlhiche. Es wird festgestellt, daI3 
die Wechselwirkungen zwischen den Triipfchen nicht immer vernachlassigt werden konnen. Vielmehr ist 
die Starke dieser Wechselwirkungen eine Funktion des Randwinkels der Triipfchen, der Warmeleitfahig- 

keit des Festkorpers und der Konzentration der TrGpfchen. 

KAIIEJIbHOE MCl-IAPEHHE: TEPMWIECKMti AHAJlll3 MHOl-OKAIIEJIbHbIX CRCTEM 

hUOTalUlN--&%JIeA)'eTCK TeMOnepeHOC OT HaI-peTOii nOBepXHOCT&i TBepAOrO TeJIa K KallJ-IRM, 

ticnapnionniwn B pexcabfe Manor0 neperpesa, B cnpae npwninaxi~n xanenb K noeepxnowi npn 
0~~y~~T~~~nrjhlpbKo~oro3apo~e06pa30BaHHK.MoA~bnpe~oAara~ npasHnbHoepacnono;reelce 
OJl(HHaKOBbIX KaIWIb,TepMHWCKH B3aHMOAeiCTByIOWiX n~ACTBOMTeMOO6MeHa CTBepAbIhi TeJTOM. 

B~IBOASTCK aHamTme.cKHe eblpaxeaan AJI~ wcna &WeJIbTa, muno~amuuie neneHHoii pn~ no fP*, 

me K-AOnn nOBepXHOCTH TBepAOrO TeJIa, CMaqHBaeMaR KiU'IJlKMH. HaheHo, 'ITO, B o6ureM, B3a&lMO- 

AeiiCTBH,IMH KaneJIb HeJIb pHei+aTb. npH 3TOM CHJla UKa3aHHblX B3iulMOAe#CTBHii 3aBHCWT OT 


